Carbon Neutral Fuels and Chemicals from Standalone Biomass Refineries

Author:

Sasidhar NallapaneniORCID,

Abstract

The urgency to eliminate man-made greenhouse gas emissions and achieve energy security/independence by all countries justifies an energy policy that considers the major role of renewable biomass as a source of organic feedstock for producing adequate organic chemicals and biofuels on a sustainable basis and economically. This paper investigates a three-stage thermochemical process to convert wet biomass into a tailored mix of syngas for producing green methanol, hydrogen, and Fischer-Tropsch products. The three-stage thermochemical process involves the torrefaction of wet biomass using hot carbon monoxide gas, pyrolysis of torrefied biomass to produce biochar, and final gasification of the pyrolysis gases by auto thermal reforming up to 1400o C temperature. The proposed process is suitable to utilize a wide variety of biomass materials such as freshly harvested biomass without field drying, agro waste, forest/plantation litter, organic municipal solid wastes, sludge from sewage water treatment plants, solid biomass rejects from anaerobic digesters, bagasse from sugar or first-generation ethanol plants, organic solid rejects from second-generation ethanol plants, waste glycerides from biodiesel plants, industrial organic waste, etc. The proposed process offers valorization of biomass so that the net income of farmers is enhanced a fewfold by selling freshly harvested biomass. The economic analysis found that carbon-neutral hydrogen, methanol, etc can be produced below the prevailing costs of such products derived from fossil crude oil or natural gas without considering carbon credits. It is feasible in a standalone biomass refinery to use any biomass as only one bulk raw material/feedstock without any harmful emissions to water bodies or the atmosphere except carbon neutral carbon dioxide gas if not sequestrated.

Publisher

Lattice Science Publication (LSP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding Roles of Religions in Indian Society;Indian Journal of Social Science and Literature;2023-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3