Low Power ALU using Wave Shaping Diode Adiabatic Logic

Author:

Khindria Ishita, ,Hingorani Kashika,Niranjan Vandana, ,

Abstract

The evolution of portable electronic devices and their widespread application has led to an increased focus on power dissipation as one of the critical parameters. An increase in functionality requirement and design complexity on a single chip has resulted in increased power dissipation. High power dissipation has motivated study and innovation on low power circuit design techniques. Adiabatic logic has been studied as one of the design techniques to reduce power dissipation by reusing the power that was getting dissipated in conventional designs. This paper presents the application of Wave Shaping Diode Adiabatic Logic (WSDAL) to implement an ALU and analyse the improvement in power dissipation as compared to the conventional CMOS design. The WSDAL design uses a slow and time-fluctuating 2-phase sinusoidal Power Clock (PC), which supplies power as well as a clock to the designs. WSDAL uses an Ultra-Low Power Diode (ULPD) structure that operates as a wave shaping device and reduces glitches at the output. The design has been implemented in OrCAD Capture and simulated using Pspice in TSMC 180nm technology. The simulations were performed at 200MHz PC frequency and power dissipation was studied over a range of voltages from 1.4V to 2.2V. The simulations show that WSDAL ALU dissipates less power than the CMOS design. This study indicates that WSDAL-based designs have the potential to be deployed for power dissipation reduction in portable devices.

Publisher

Lattice Science Publication (LSP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3