Abstract
We obtain a recurrence relation for the Ramanujan’s tau-function involving the sum of divisors function, and the solution of this recurrence gives a closed formula for 𝝉(𝒏) in terms of the complete Bell polynomials
Publisher
Lattice Science Publication (LSP)
Reference31 articles.
1. G. E. Andrews, S. Kumar Jha, J. López-Bonilla, Sums of squares, triangular numbers, and divisor sums, J. of Integer Sequences 26 (2023) Article 23.2.5
2. M. A. Pathan, H. Kumar, M. Muniru Iddrisu, J. López-Bonilla, Polynomial expressions for certain arithmetic functions, J. of Mountain Res. 18, No. 1 (2023) 1-10.
3. R. Sivaraman, J. D. Bulnes, J. López-Bonilla, Complete Bell polynomials and recurrence relations for arithmetic functions, European J. of Theor. Appl. Sci. 1, No. 3 (2023) 51-55.
4. T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York (1976).
5. G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, Clarendon Press, Oxford (1979).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献