1. Beuzet, E., Lamy, J.-S., Bretault, A., and Simoni, E., Modelling of Zry-4 cladding oxidation by air, under severe accident conditions using the MAAP4 code, Nuclear Engineering and Design, Vol.241 (2011), pp.1217-1224.
2. Beuzet, E., Haurais, F., Bals, C., Coindreau, O., Fernandez-Moguel, L., Vasiliev, A., and Park, S., Cladding oxidation during air ingress. Part II: Synthesis of modelling results, Annals of Nuclear Energy, Vol.93 (2016), pp.18-27.
3. Coindreau, O., Duriez, C., and Ederli, S., Air oxidation of Zircaloy-4 in the 600–1000 °C temperature range: Modeling for ASTEC code application, Journal of Nuclear Materials, Vol.405 (2010), pp.207-215.
4. Gauntt, R., Kalinich, D., Cardoni, J., Phillips, J., Goldmann, A., Pickering, S., Francis. M., Robb, K., Ott, L., Wang, D., Smith, C., St.Germain, S., Schwieder, D., and Phelan, C., Fukushima Daiichi accident study (Status as of April 2012), SAND2012-6173 (2012).
5. Hidaka, M. and Ujita, H., Verification of flow analysis capability in the model of three-dimensional natural convection with simultaneous spreading, melting and solidification for the debris coolability analysis module in the severe accident analysis code ‘SAMPSON’, (I), Journal of Nuclear Science and Technology, Vol.38, No.9 (2001), pp.745-756.