1. Amstrup, S. C., Mcdonald, T. L., and Durner G. M., Using satellite radiotelemetry data to delineate and manage wildlife populations, Wildlife Society Bulletin, Vol.32, No.3 (2004),pp. 661-679.
2. Bin J., Zhang H. J., Liu Y. B., Liu F., Lu S. L., and Dai Z. J., A feature extraction method using improved multi-scale entropy for rolling bearing fault diagnosis, Entropy, Vol.20, No.4 (2018), pp. 212.
3. Bo G., Xu G. J., Liu X. F., and Lin J., Bearing Fault Diagnosis based on Subband Time-Frequency Texture Tensor, IEEE Access, Vol.7 (2019), pp. 37611-37619.
4. Borghesani P., Pennacchi P., and Chatterton S., The relationship between kurtosis-and envelope-based indexes for the diagnostic of rolling element bearings, Mechanical Systems & Signal Processing, Vol.43 (2014),pp.25-43.
5. Chen B. J., Shen B. M., Chen F. F., Tian H. L., Xiao W. R., Zhang F. J., and Zhao C. H., Fault diagnosis method based on integration of RSSD and wavelet transform to rolling bearing, Measurement, Vol.131 (2019), pp.400-411.