Acquisition and validation of expert knowledge for high-mix and low-volume production scheduling problems
Author:
Affiliation:
1. Research into Artifacts, Center for Engineering, The University of Tokyo
2. National Institute of Advanced Industrial Science and Technology (AIST)
3. National Institute of Informatics
Publisher
Japan Society of Mechanical Engineers
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Link
https://www.jstage.jst.go.jp/article/jamdsm/17/1/17_2023jamdsm0008/_pdf
Reference11 articles.
1. Benjamin, S., Anwer, N., Mathieu, L. and Wartzack, S., Shaping the digital twin for design and production engineering, CIRP Annals-Manufacturing Technology, Vol.66, No.1 (2017), pp. 141–144.
2. Frazzon, E.M., Kucj, M. and Freitag, M., Data-driven production control for complex and dynamic manufacturing systems, CIRP Annals-Manufacturing Technology, Vol.67, No.1 (2018), pp. 515–518.
3. Godri, I., Kardos, C., Pfeiffer, A. and Vanza, J., Data analytics-based decision support workflow for high-mix low-volume production systems, CIRP Annals-Manufacturing Technology, Vol.68, No.1 (2019), pp. 471–474.
4. Industrial Internet Consortium, The Industrial Internet of Things Volume G1: Reference Architecture, available form https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf, (accessed on 16 Jan. 2019).
5. Kondoh, S., Komoto, H., Takeda, H. and Umeda, Y., Acquisition of expert’s knowledge for high-mix and low-volume production scheduling problem, Proc. of Int. Conference on Leading Edge Manufacturing in 21st century: LEM 21, 2021, DOI:10.1299/jsmelem.2021.10.124-126.
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Leveraging digital twin into dynamic production scheduling: A review;Robotics and Computer-Integrated Manufacturing;2024-10
2. Concurrent control chart pattern recognition in manufacturing processes based on zero-shot learning;ISA Transactions;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3