1. Andrew, C., Ohad, S., Nathan, S., and Karthik, S., Better mini-batch algorithms via accelerated gradient methods, Proc. NIPS 2011, Advances in Neural Information Processing Systems 24, (2011).
2. Bergstra, J., Bardenet, R., Bengio, Y. and Kgl, B., Algorithms for hyper-parameter optimization, Proc. NIPS 2012, Advances in Neural Information and Processing Systems, Vol.25, (2011).
3. Cicek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T. and Ronneberger, O., 3d U-Net: Learning dense volumetric segmentation from sparse annotation, (2016), arXiv:1606.06650.
4. Diederik, P. K., and Jimmy, L. B., Adam: A method for stochastic optimization, (2017), arXiv:1412.6980.
5. Ezugwu, E. O., Arthur, S. J. and Hines, E. L., Tool-wear prediction using artificial neural networks, J. of Materials Processing Technology, Vol.49, No.3-4 (1996), pp.255-265.