ONLINE DETECTION SYSTEM FOR CRUSHED RATE AND IMPURITY RATE OF MECHANIZED SOYBEAN BASED ON DEEPLABV3+

Author:

CHEN Man1,CHENG Gong1,XU Jinshan1,ZHANG Guangyue1,JIN Chengqian1

Affiliation:

1. Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu / China

Abstract

In this study, an online detection system of soybean crushed rate and impurity rate based on DeepLabV3+model was constructed. Three feature extraction networks, namely the MobileNetV2, Xception-65, and ResNet-50 models, were adopted to obtain the best DeepLabV3+model through test analysis. Two well-established semantic segmentation networks, the improved U-Net and PSPNet, are used for mechanically harvested soybean image recognition and segmentation, and their performances are compared with the DeepLabV3+ model’s performance. The results show that, of all the models, the improved U-Net has the best segmentation performance, achieving a mean intersection over union (FMIOU) value of 0.8326. The segmentation performance of the DeepLabV3+ model using the MobileNetV2 is similar to that of the U-Net, achieving FMIOU of 0.8180. The DeepLabV3+ model using the MobileNetV2 has a fast segmentation speed of 168.6 ms per image. Taking manual detection results as a benchmark, the maximum absolute and relative errors of the impurity rate of the detection system based on the DeepLabV3+ model with the MobileNetV2 of mechanized soybean harvesting operation are 0.06% and 8.11%, respectively. The maximum absolute and relative errors of the crushed rate of the same system are 0.34% and 9.53%, respectively.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Reference20 articles.

1. Bhupendra M. K., Miglani A. Kankar, P.K. (2022). Deep CNN-based damage classification of milled rice grains using a high-magnification image dataset. Computers and Electronics in Agriculture, Vol.195,pp.106811. United States. https://doi.org/10.1016/j.compag.2022.106811

2. Chen J., Han M.N., Lian Y. et al (2020). Segmentation of impurity rice grain images based on U-Net model (基于 U-Net 模型的含杂水稻籽粒图像分割). Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE). Vol.36, no.10, pp.174-180. Beijing / China.https://doi.org/10.11975/j.issn.1002-6819.2020.10.021

3. Chen M., Ni Y.L., Jin C.Q. et al (2021). Online monitoring method of mechanized soybean harvest quality based on machine vision (基于机器视觉的大豆机械化收获质量在线监测方法). Transactions of the Chinese Society for Agricultural Machinery. Vol.52, no.1, pp.91-98. Beijing / China.https://doi.org/10.6041/j. issn.1000-1298.2021.01.010

4. Chen Y.P., Kang Y., Wang T.E. et al (2020). Distribution regularities of the threshed mixtures in longitudinal axial flow flexible thresher of soybean harvester (大豆收获机纵流柔性脱粒装置脱出物分布规律 ). Journal of China Agricultural University. Vol.25, no.09, pp.104-111. Beijing / China.https://doi.org/10.11841/j.issn.1007-4333.2020.09.11

5. Cotrim W. da S., Minim V.P.R., Felix L.B. et al (2020). Short convolutional neural networks applied to the recognition of the browning stages of bread crust. J. Food Eng. Vol.277, pp.109916. England. https://doi.org/10.1016/j.jfoodeng.2020.109916

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3