AUTO LOAD-LEVELLING CONTROL OF A LARGE SPRAYER CHASSIS USING THE SLIDING MODE METHOD

Author:

Yu Chen1,Jun Wu2,Shuo Zhang1,Jun Chen1,Hui Xia3,Yahui Zhu3,Jiajun Wang3

Affiliation:

1. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China

2. Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China

3. Jiangsu World Agriculture Machinery Co., Ltd, Danyang 212300, China

Abstract

When a sprayer travels on a ramp or a rough road, the load exerted on each wheel changes. If an unbalanced wheel load is maintained for long periods of time, the wheels may slip, the sprayer’s manoeuvrability is affected, and a rollover accident may occur. In this study, the air suspension of a self-propelled sprayer chassis was investigated, and the potential load imbalance conditions of the sprayer suspension were analysed. A mathematical model of the inflation/deflation of the suspension was established based on air nonlinear thermodynamics and vertical dynamics theory and a ¼-scale vertical dynamics model of the sprayer chassis was developed. A control strategy to balance the sprayer’s wheel load was developed. Considering the nonlinear characteristics of the air suspension, a sliding mode variable structure control method was used to balance the wheel load. Simulation experiments were conducted under different working conditions. The simulation results showed that the sliding mode variable structure control provided good control response and precision. The proposed auto load-levelling controller was tested under different working conditions, including different roll and pitch angles and navigating a rough road; the controller successfully changed the load on each spring to ensure that the sprung mass of the suspension was equal and the wheel load was balanced. The results of this study provide reference information for auto load-levelling control of large sprayers.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3