FAULT PREDICTION MODEL OF CORN GRAIN HARVESTER BASED ON SELFCODING NEURAL NETWORK

Author:

WANG Xin1,ZHANG Guohai1,YAO Jia1,LIAN Jitan1,YANG Xining1

Affiliation:

1. School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255091, China

Abstract

The corn grain harvester serves as an example of complex farming machinery with a condition monitoring system that collects a lot of working condition data, making it challenging to identify the true change pattern due to the data coming from the equipment in various states. Firstly, the overall structure of the corn grain harvester is analyzed, and the common causes and mechanisms of corn grain harvester failures are analyzed, leading to the cutting table as the main research object; Secondly, by collecting historical failure data of corn grain harvester as well as real-time failure information for collation and pre-processing, eliminating interference such as noise and missing data, establishing a failure matrix, extracting internal characteristics between failure causes and establishing a mapping between failure causes and failure phenomena; Finally, the future failure phenomena of the corn grain harvester are predicted according to different failure causes. The simulation analysis results show that the self-coding neural network fault prediction model can better predict the occurrence probability and types of faults and provide data support for fault maintenance and decision making of agricultural machinery.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3