DISCRIMINATION OF CERASUS HUMILIS FRUIT MATURITY BASED ON HYPERSPECTRAL IMAGING TECHNOLOGY

Author:

WANG Bin1,YANG Hua1,LI Lily1

Affiliation:

1. College of Information Science and Engineering, Shanxi Agricultural University, Taigu/China

Abstract

In order to realize the rapid and accurate identification of different maturity of Cerasus humilis fruit, this study explored the nondestructive testing method of Cerasus Humilis fruit maturity based on hyperspectral imaging technology. The hyperspectral data of 320 samples of Cerasus humilis fruit were collected by using a hyperspectral imaging system in the range of 895~1700 nm. By comparing the prediction accuracy of the partial least squares (PLS) model established by four preprocessing methods, the competitive adaptive reweighted algorithm (CARS), successive projection algorithm (SPA), and random frog (RF) were used to extract characteristic wavelengths, and partial least squares-discriminant analysis (PLS-DA) and least squares-support vector machine (LS-SVM) discriminant models were established. The results showed that the SPA-LS-SVM model had the highest discrimination accuracy for the four types of maturity samples, and the discrimination accuracy of the correction set and prediction set were 85.00% and 87.50%, respectively. This study provides a theoretical reference for the rapid and nondestructive testing of the maturity of Cerasus Humilis fruit by hyperspectral imaging technology.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Reference18 articles.

1. Araújo, M.C.U., Saldanha, T.C.B., Galvao, R.K.H., Yoneyama, T., Chame, H.C., & Visani, V. (2001).The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and intelligent laboratory systems, 57(2), 65-73.https://doi.org/10.1016/S0169-7439(01)00119-8

2. Chi, J.T., Zhang, S.J., Ren, R., Lian, M.R., & Mu, B.Y. (2021). Detection of eggplant external defects using hyperspectral technology. Modern Food Science and Technology, 37(9), 279-284+178.https://doi.org/10.13982/j.mfst.1673-9078.2021.9.0034

3. Galvao, R.K.H., Araujo, M.C.U., José, G.E., Pontes, M.J.C., & Saldanha, T.C.B. (2005). A method for calibration and validation subset partitioning. Talanta, 67, 736–740. https://doi.org/10.1016/j.talanta.2005.03.025

4. Li, L.L., Wang, B., Zhang, X.H., & Zhang, S.J. (2019). Discrimination of plum fruit maturity based on hyperspectral imaging technology. Modern Food Science and Technology, 35(6): 258-263.https://doi.org/10.13982/j.mfst.1673-9078.2019.6.034

5. Liu, J. X., He, X. W., Luo, H. P., Xu, J. Y., & Shen, L. L. (2022). Maturity discrimination model of little white apricot based on hyperspectral imaging technology. Food Research and Development, 43(15):158-165. https://doi.org/10.12161/j.issn.1005-6521.2022.15.022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3