1. Araújo, M.C.U., Saldanha, T.C.B., Galvao, R.K.H., Yoneyama, T., Chame, H.C., & Visani, V. (2001).The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and intelligent laboratory systems, 57(2), 65-73.https://doi.org/10.1016/S0169-7439(01)00119-8
2. Chi, J.T., Zhang, S.J., Ren, R., Lian, M.R., & Mu, B.Y. (2021). Detection of eggplant external defects using hyperspectral technology. Modern Food Science and Technology, 37(9), 279-284+178.https://doi.org/10.13982/j.mfst.1673-9078.2021.9.0034
3. Galvao, R.K.H., Araujo, M.C.U., José, G.E., Pontes, M.J.C., & Saldanha, T.C.B. (2005). A method for calibration and validation subset partitioning. Talanta, 67, 736–740. https://doi.org/10.1016/j.talanta.2005.03.025
4. Li, L.L., Wang, B., Zhang, X.H., & Zhang, S.J. (2019). Discrimination of plum fruit maturity based on hyperspectral imaging technology. Modern Food Science and Technology, 35(6): 258-263.https://doi.org/10.13982/j.mfst.1673-9078.2019.6.034
5. Liu, J. X., He, X. W., Luo, H. P., Xu, J. Y., & Shen, L. L. (2022). Maturity discrimination model of little white apricot based on hyperspectral imaging technology. Food Research and Development, 43(15):158-165. https://doi.org/10.12161/j.issn.1005-6521.2022.15.022