ACCURATE NON-DESTRUCTIVE TESTING METHOD FOR POTATO SPROUTS FOCUSING ON DEFORMABLE ATTENTION

Author:

GENG Binxuan1,DAI Guowei2,ZHANG Huan1,QI Shengchun1,DEWI Christine3

Affiliation:

1. Faculty of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266000 / China

2. Agricultural Information Institute of CAAS, Beijing 100081 / China

3. Faculty of Information Technology, Satya Wacana Christian University Salatiga / Indonesia

Abstract

Accurate potato sprout detection is the key to automatic seed potato cutting, which is important for potato quality and yield. In this paper, a lightweight DAS-YOLOv8 model is proposed for the potato sprout detection task. By embedding DAS deformable attention in the feature extraction network and the feature fusion network, the global feature context can be efficiently represented and the attention increased to the relevant pixel image region; then, the C2f_Atten module fusing Shuffle attention is designed based on the C2f module to satisfy the attention to the key feature information of the high-level abstract semantics of the feature extraction network. At the same time, the ghost convolution is introduced to improve the C2f module and convolutional module to realize the decomposition of the redundant features to extract the key features. Verified on the collected potato sprout image data set, the average accuracy of the proposed DAS-YOLOv8 model is 94.25%, and the calculation amount is only 7.66 G. Compared with the YOLOv8n model, the accuracy is 2.13% higher, and the average accuracy is 1.55% higher. In comparison to advanced state-of-the-art (SOTA) target detection algorithms, the method in this paper offers a better balance between comprehensive performance and lightweight model design. The improved and optimized DAS-YOLOv8 model can realize the effective detection of potato sprouts, meet the requirements of real-time processing, and can provide theoretical support for the non-destructive detection of sprouts in automatic seed potato cutting.

Publisher

INMA Bucharest-Romania

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3