DESIGN OF ENERGY MANAGEMENT STRATEGY FOR DUAL-MOTOR-DRIVEN ELECTRIC TRACTORS

Author:

YANG Jun1,SHI Aiping1,JIANG Yupeng1,DING Bochuan1

Affiliation:

1. College of Agricultural Engineering, Jiangsu University, Zhenjiang 212000, China

Abstract

At present, electric tractors experience significant battery energy loss during operation, resulting in a short continuous running time. Therefore, in order to reduce the power consumption of the tractor drive system, minimize battery energy loss, and extend the operating time under various conditions, this paper presents a method for driving an electric tractor based on dual-motor coupling. Based on the characteristics of the transmission structure, an online torque distribution strategy for dual-motor coupling-driven electric tractors using a fuzzy control approach is proposed. First, an enhanced genetic algorithm is utilized to optimize the fuzzy rule table. Simultaneously, it is compared with the offline optimization strategy of dynamic programming. Subsequently, a method that integrates test data models and theoretical models is employed to establish an efficiency model of key components of the electric tractor drive system and a longitudinal dynamics model of the entire machine. The performance of the entire vehicle was simulated and analyzed under plowing conditions. Finally, on the experimental bench, conduct steady-state load tests and dynamic performance tests on the dual-motor coupled drive system. The results show that the State of Charge (SOC) change trends of the fuzzy control strategy based on the improved genetic algorithm and the dynamic programming strategy are similar. The SOC change values are close, which enhances the adaptability of the electric tractor in various operating conditions. Compared with the fuzzy control strategy, the improved strategy reduced average power consumption by 8.8%, demonstrating that the fuzzy control energy management strategy based on the enhanced genetic algorithm is both economical and superior. The bench experiment demonstrated that the dual-motor drive system can adapt to load changes to achieve power distribution between the two motors, meeting the required workload while reducing power consumption.

Publisher

INMA Bucharest-Romania

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3