ANALYSIS OF ROLL STABILITY OF THE SPRAYER BASED ON THE EQUIVALENT MECHANICAL MODEL OF LIQUID SLOSHING

Author:

ZHENG Jizhou1,LI Yanpeng2,ZHANG Lan2,XUE Xinyu3

Affiliation:

1. College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, Shandong/ China, Shandong Provincial Key Laboratory of Horticultural Machinery and Equipment, Taian, Shandong / China

2. College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, Shandong/ China

3. Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu/ China, College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, Shandong/ China

Abstract

In order to analyze the influence of liquid sloshing on roll stability of the sprayer, the equivalent mechanical model of liquid sloshing was introduced. A multi-degree-of-freedom model of the sprayer was established that includes the effect of liquid sloshing. An E-level road spectrum was constructed based on sinusoid superposition method according to the grade of the field ground unevenness, and the roll stability of the sprayer under these excitations was investigated. The effects of liquid filling ratio and driving speed were analyzed. The results show that the roll angle decreases with the increase of filling ratio at low speed, but the situation is opposite at high speed. The vertical acceleration of the vehicle body decreases to some extent under some situations due to the presence of the liquid. In general, both the roll angle and the vertical acceleration increase with the increase of the driving speed, especially in the case of existing liquid sloshing.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3