IMPACT OF VENTILATIONS IN ELECTRONIC DEVICE SHIELD ON MICRO-CLIMATE DATA ACQUIRED IN A TROPICAL GREENHOUSE

Author:

Ardiansah Irfan1,Bafdal Nurpilihan2,Bono Awang3,Suryadi Edy2,Husnuzhan Ramadhoni1

Affiliation:

1. Department of Agro-Industrial Technology, Faculty of Agro-Industrial Technology, Padjadjaran University / Indonesia

2. Department of Agriculture Engineering and Biosystem, Faculty of Agro-Industrial Technology, Padjadjaran University / Indonesia

3. Department of Chemical Engineering, Faculty of Engineering, Universiti Malaysia Sabah / Malaysia

Abstract

The greenhouse which is a building used to manipulate the micro-climate is an essential building for plant growth. Greenhouses have one or more devices that are used to monitor their internal environments against changes in micro-climate. The problem is that some devices are metal-based devices and plastics that can be deformed, such as electronic devices, one of which is a micro-climate monitoring device, so a shield that can protect the device but does not interfere with the sensor readings is needed. The purpose of this study was to make and test a plastic-based container called Duradus Junction Box, which has six removable ventilation openings to measure the micro-climate data. This study uses five Duradus Junction Boxes with different numbers of ventilation openings, a micro-controller connected to the air temperature and relative humidity sensor, and a MicroSD module to record all micro-climate data, all devices being then tested simultaneously for 30 days. Statistically, after using One Way ANOVA, this study found that micro-climate measurements result for actual devices data can be considered similar because the P-value for temperature (0.886) and relative humidity (0.917) is greater than alpha level of 0.05. However, when reading the recorded data for both parameters, it can be seen that micro-climate data inside all shields are slightly higher than actual microclimate data ranging from 1 to 2oC for air temperature and 1 to 3% for air relative humidity.

Publisher

R and D National Institute for Agricultural and Food Industry Machinery - INMA Bucharest

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3