ANALYSIS ON HANDLING PATH OPTIMIZATION OF AGRICULTURAL ROBOTS BASED ON IMPROVED ANT COLONY ALGORITHM

Author:

WANG Zhen1,QIAN Keqing1,ZHU Xiaoli1,HU Xinyu1,LI Xinran2

Affiliation:

1. College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan, China

2. Zhumadian City Yicheng District Agricultural and Rural Bureau, Zhumadian, Henan, China

Abstract

With the rapid development of agricultural machinery intelligence and informatization, agricultural robots are becoming the protagonist, promoting standardized production in agriculture, improving efficiency, and reducing labor costs. However, how to quickly plan an efficient and safe path for agricultural transport robots is currently a hot topic in path planning research. In this study, the path optimization problem of agricultural robots handling agricultural products (such as Edible Fungi) in and out of warehouses, which served as the study object, was solved. First, the number of agricultural handling robots was initialized based on the scanning method, and the geometric center of sub-path nodes was set as the virtual node. Secondly, the optimal path of the virtual node was solved using the improved ant colony algorithm embedded with a genetic operator, and the optimal result of sub-paths was acquired. Thirdly, the optimal solution meeting constraint conditions was obtained with the launch cost, transportation cost, and time cost of agricultural robots as objective functions. Lastly, the effectiveness of the optimization model and the improved ant colony algorithm was verified through the instance analysis. This study is of certain significance to the exwarehousing path optimization of agricultural robots under the sustainable development concept of agricultural automation.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3