ANALYSIS AND CALIBRATION OF QUINOA GRAIN PARAMETERS USED IN A DISCRETE ELEMENT METHOD BASED ON THE REPOSE ANGLE OF THE PARTICLE HEAP

Author:

Liu Fei1,Li Dapeng1,Zhang Tao1,Lin Zhen1

Affiliation:

1. College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot / China

Abstract

An optimization method based on a regression model was established by combining physical experiments, and an extended distinct element method (EDEM) simulation was proposed to address the difficult problem of obtaining the contact characteristic parameters used in the discrete element method (DEM) model of quinoa grains and for calibrating the parameters of the quinoa DEM model. The Plackett-Burman test was designed using Design-Expert software to screen the parameters of the quinoa DEM model, and the quinoa-quinoa static friction coefficient, quinoa-polylactic acid (PLA) static friction coefficient and quinoa-quinoa rolling friction coefficient were found to have significant effects on the repose angle. The optimal value intervals of the parameters with a significant impact on the repose angle were determined using the steepest ascent test. A regression model of the repose angle and the parameters with a significant impact on the repose angle was then established with the Box-Behnken design and further optimized, and the combination of optimal parameters was as follows: 0.26 for the quinoa-quinoa static friction coefficient (E), 0.38 for the quinoa-PLA static friction coefficient (F), and 0.08 for the quinoa-quinoa rolling friction coefficient (G). Lastly, the optimal combination was used in the verification performed by the DEM simulation, and the error between the simulated repose angle and the target repose angle was 0.86%. These findings indicated that it was feasible to use the response surface optimization to calibrate the parameters required for quinoa DEM simulation and that the combination of optimal parameters can provide a reference for selecting the characteristic contact parameters used in quinoa DEM simulation.

Publisher

R and D National Institute for Agricultural and Food Industry Machinery - INMA Bucharest

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3