OPTIMISED DESIGN AND SIMULATION ANALYSIS OF LONGITUDINAL FLOW CORN CONE THRESHING DEVICE

Author:

GONG Jinliang1,LUO Zengjia2,ZHANG Yanfei2

Affiliation:

1. Collaborative Innovation Center for Shandong’s Main crop Production Equipment and Mechanization, Qingdao, Shandong, 266109, China; School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China

2. School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255000, China

Abstract

Aiming at the high crushing rate and impurity rate of corn kernel machine harvesting in the Huanghuaihai region, a longitudinal flow conical variable pitch threshing device is designed, which adopts the combined threshing element of "plate teeth + ribs" and the combined threshing concave plate of "leftward round tube type + vertical round tube type". The cob model was established, and the force analysis of the cob threshing process was carried out, and the type of threshing drum and the installation angle of the threshing concave plate round tube were determined as the main influencing factors, and the collision force on the corn cob was taken as the test index. Using EDEM discrete element simulation software, simulation tests were carried out on different types of threshing drums and threshing concave plates with different installation angles of round tubes with corn cobs, and the better threshing method was finally determined: a conical threshing drum at a drum speed of 450 r/min, and a combination of left-facing round-tube-type+vertical round-tube-type threshing concave plates with an installation angle of 10° (front-sparse and back-dense type) were used. Compared with the vertical circular tube type threshing concave plate, the corn cob contact force decreased from 313.5N to 247.3N, which was optimal for threshing in the range allowed by the corn kernel destructive force.

Publisher

INMA Bucharest-Romania

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3