SIMULATION OF ROOTS VACUUM PUMP ROTOR GEOMETRY

Author:

DMYTRIV Vasyl1,DMYTRIV Ihor1,HORODNIAK Roman1,HORODETSKYY Ivan2,IONITA Claudia3,STEFAN Vasilica4

Affiliation:

1. Lviv Polytechnic National University, Institute of Mechanical Engineering and Transport, Lviv, Ukraine

2. Lviv National Environmental University, Faculty of Mechanic, Power Engineering and Information Technologies, Lviv-Dubliany, Ukraine

3. Politehnica University of Bucharest / Romania

4. INMA Bucharest / Romania

Abstract

Mathematical model for designing the surface geometry of the Roots pump rotor based on the Cassini oval principle was derived. The polar coordinate system was used, and the radius vector, the direction of which was set by the φ angle, characterizes the location of the point on the surface of the rotor. The distance of this point from the axis of rotor rotation was set by the calculated value of the ρ_R polar radius vector. The γ angle of rotors rotation characterizes their mutual orientation in the plane of rotation. Peculiarities of the choice of the a and b parameters that satisfy the shape of the rotor surface geometry are considered. An example of rotor geometry is given for rotor radius R = 50 mm, rotor rounding radius r = 20 mm, parameters a = 33.166 and b = 28. Rotor geometry depends on normalized parameters of a and b, which are constant for a given shape of the surface and constructive dimensions. A mathematical model of the usable cross-sectional area of the pump has been developed. The usable cross-sectional area of the pump was simulated by the geometry of the rotors. The area of the rotor was determined by the geometry of the surface, which was described by an elliptic integral of the 2nd kind. The usable cross-sectional area for the given parameters is modelled. The results of simulation in the form of graphical dependences are given. Parameters a and b must meet the condition of √2⁄2<b⁄a<1. Under such conditions, the geometry of the rotor surface will be a Cassini oval. The rotation of the two rotors against each other will be by rolling one surface over another.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3