DESIGN AND EXPERIMENTAL OPTIMIZATION OF ROTARY CUTTING SAFFLOWER HARVESTING END EFFECTOR

Author:

LI Puhang1,ZHANG Xinyue1,ZHANG Hao1,WANG Zeyu1,WEN Shiwei1,CHEN Jun1

Affiliation:

1. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100/China

Abstract

Aiming at the problems of high damage rate and loss rate of the existing safflower harvesting equipment, this study designed a rotary cutting safflower harvesting end effector by combining the growth characteristics and mechanical properties. Through force analysis of the cutting tool, the key factors, which affects the harvesting performance, were clarified to be the blade inclination and the knife shaft speed. The Fluent software was used to analyze the flow field of the harvesting chamber, which aims to determine the appropriate wind speed. To improve the working performance of the rotary cutting safflower harvesting end effector, a three-factor, three-level orthogonal test was carried out with the blade inclination, knife shaft speed and wind speed as the influencing factors, and with the recovery rate, damage rate and loss rate as the response indexes. A regression model for the three-factor interaction was developed and optimized based on the results of the Box-Behnken test. The optimal parameter combination is: the blade inclination is 15°, the knife shaft speed is 1570 r/min, and the wind speed is 6 m/s. A test of the optimization results showed that the recovery rate was 91.47%, the damage rate was 7.51%, and the loss rate was 4.67%. This study can provide theoretical basis and technical reference for the mechanized harvesting of safflower.

Publisher

INMA Bucharest-Romania

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3