AUTOMATED QUALITY ASSESSMENT OF APPLES USING CONVOLUTIONAL NEURAL NETWORKS

Author:

IOSIF Adrian1,MAICAN Edmond1,BIRIȘ Sorin1,POPA Lucretia2

Affiliation:

1. Faculty of Biotechnical Systems Engineering, U.N.S.T POLITEHNICA of Bucharest / Romania

2. INMA Bucharest / Romania

Abstract

Quality assessment of apples is a pivotal task in the agriculture and food industries, with direct implications for economic gains and consumer satisfaction. Traditional methods, whether manual, mechanical or electromechanical, face challenges in terms of labor intensity, speed, and quality control. This paper introduces a solution using machine learning algorithms – specifically, Convolutional Neural Networks (CNNs) – for a more nuanced and efficient apple quality assessment. Our approach offers a balance between the high-speed capabilities of electromechanical sorting and the detailed recognition achievable with human evaluation. A dataset consisting of over 2000 apple images, labeled as 'Good' or 'Damaged', was compiled for training and validation purposes. The paper investigates various architectures and hyperparameter settings for several CNN models to optimize performance metrics, such as accuracy, precision, and recall. Preliminary evaluations indicate that the MobileNet and Inception models yield the highest levels of accuracy, emphasizing the potential of machine learning algorithms to significantly enhance apple quality assessment processes. Such improvements can lead to greater efficiency, reduced labor costs, and more rigorous quality control measures.

Publisher

INMA Bucharest-Romania

Reference22 articles.

1. Abdo, A., Hong, C.J., Kuan, L.M., Pauzi, M.M., Sumari, P., Abualigah, L, Zitar, R.A., Oliva, D. (2023). Markisa/Passion Fruit Image Classification Based Improved Deep Learning Approach Using Transfer Learning. In L. Abualigah (Ed.), Classification Applications with Deep Learning and Machine Learning Technologies (pp. 143-190). Springer. doi:10.1007/978-3-031-17576-3

2. Anuar, N.A., Muniandy, L., Bin Jaafar, K.A., Lim, Y., Sabeeh, A.L., Sumari, P., Abualigah, L., Abd Elaziz, M., Alsoud, A.R.,Ahmad MohdAziz Hussein, A.M. (2023). Rambutan Image Classification Using Various Deep Learning Approaches. In L. Abualigah (Ed.), Classification Applications with Deep Learning and Machine Learning Technologies (pp. 23-44). Springer. doi:10.1007/978-3-031-17576-3

3. Jamwal, A., Srivastava, J.N., Dutta, U. (2022). Important Diseases of Apple (Malus domestica L.) and Their Management. In J. S. Srivastava, Diseases of Horticultural Crops: Diagnosis and Management (Vol. I, pp. 31-60). Apple Academic Press.

4. Kavdir, I., Guyer, D.E. (2002, November). Apple Sorting Using Artificial Neural Networks and Spectral Imaging. Transactions of the ASAE. American Society of Agricultural Engineers, 45(6).

5. Ke, C., Weng, N.T., Yang, Y., Yang, Z.M., Sumari, P., Abualigah, L., Kamel, S., Ahmadi, M., Al-Qaness, M., Forestiero, A., Alsoud, A.R. (2023). Mango Varieties Classification-Based Optimization with Transfer Learning and Deep Learning Approaches. In L. Abualigah (Ed.), Classification Applications with Deep Learning and Machine Learning Technologies (pp. 45-66). Springer. doi:10.1007/978-3-031-17576-3

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3