SOIL STRESS ANALYSIS AT DIFFERENT DEPTHS AFTER AGRICULTURAL VEHICLE OPERATION

Author:

GUO Jun1,SUN Enhui1,YANG Yue1,LU Jun1

Affiliation:

1. School of Automotive Engineering, Yancheng Institute of Technology, Yancheng, 224051, China

Abstract

In modern agriculture, with the development and widespread use of agricultural mechanization, mechanical compaction of soils has become a growing problem, resulting in soil degradation in the field. Based on the Boussinesq solution, the soil stress formula for the circular load area is derived, and MATLAB is used to simulate the stress-strain relationship of the soil at different depths. The results show that under the same load conditions, as the soil depth increases, the soil stress gradually decreases, with the most significant stress change occurring at 0.2 m depth. Soil compression experiments conducted using a consolidation instrument revealed that the soil void ratio dropped rapidly under loading of 50-200 kPa, and the decline slowed after 400 kPa. When the soil void ratio decreases to 0.2-0.4, the soil stress changes tend to stabilize. Comparison between the theoretical formula and the compression experimental data indicates that the soil stress gradually decreases as the thickness of the soil layer increases and the pressure load increases, verifying the linear relationship predicted by the theoretical formula.

Publisher

INMA Bucharest-Romania

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3