Author:
C Narmatha, ,M Surendra Prasad,
Abstract
The second most diagnosed disease of men throughout the world is Prostate cancer (PCa). 28% of cancers in men result in the prostate, making PCa and its identification an essential focus in cancer research. Hence, developing effective diagnostic methods for PCa is very significant and has critical medical effect. These methods could improve the advantages of treatment and enhance the patients' survival chance. Imaging plays a significant role in the identification of PCa. Prostate segmentation and classification is a difficult process, and the difficulties fundamentally vary with one imaging methodology then onto the next. For segmentation and classification, deep learning algorithms, specifically convolutional networks, have quickly become an optional technique for medical image analysis. In this survey, various types of imaging modalities utilized for diagnosing PCa is reviewed and researches made on the detection of PCa is analyzed. Most of the researches are done in machine learning based and deep learning based techniques. Based on the results obtained from the analysis of these researches, deep learning based techniques plays a significant and promising part in detecting PCa. Most of the techniques are based on computer aided detection (CAD) systems, which follows preprocessing, segmentation, feature extraction, and classification processes, which yield efficient results in detecting PCa. As a conclusion from the analysis of some recent works, deep learning based techniques are adequate for the detection of PCa.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献