A New Modified Recurrent Extreme Learning with PSO Machine Based on Feature Fusion with CNN Deep Features for Breast Cancer Detection

Author:

M Surendra Prasad, ,S ManimuruganORCID,

Abstract

Breast cancer is a prevalent cause of death, and is the only form of cancer that is common among women worldwide and mammograms-based computer-aided diagnosis (CAD) program that allows early detection, diagnosis and treatment of breast cancer. But the performance of the current CAD systems is still unsatisfactory. Early recognition of lumps will reduce overall breast cancer mortality. This study investigates a method of breast CAD, focused on feature fusion with deep features of the Convolutional Neural Network (CNN). First, present a scheme of mass detection based on CNN deep features and modified clustering of the Extreme Learning Machine (MRELM). It forecasts load through Recurrent Extreme Learning Machine (RELM) and utilizes Artificial Bee Colony (ABC) to optimize weights and biases. Second, a collection of features is constructed that relays deep features, morphological features, texture features, and density features. Third, MRELM classifier is developed to distinguish benign and malignant breast masses using the fused feature set. Extensive studies show the precision and efficacy of the proposed method of mass diagnosis and classification of breast cancer.

Publisher

MNAA Pub World

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3