Abstract
Breast cancer is a prevalent cause of death, and is the only form of cancer that is common among women worldwide and mammograms-based computer-aided diagnosis (CAD) program that allows early detection, diagnosis and treatment of breast cancer. But the performance of the current CAD systems is still unsatisfactory. Early recognition of lumps will reduce overall breast cancer mortality. This study investigates a method of breast CAD, focused on feature fusion with deep features of the Convolutional Neural Network (CNN). First, present a scheme of mass detection based on CNN deep features and modified clustering of the Extreme Learning Machine (MRELM). It forecasts load through Recurrent Extreme Learning Machine (RELM) and utilizes Artificial Bee Colony (ABC) to optimize weights and biases. Second, a collection of features is constructed that relays deep features, morphological features, texture features, and density features. Third, MRELM classifier is developed to distinguish benign and malignant breast masses using the fused feature set. Extensive studies show the precision and efficacy of the proposed method of mass diagnosis and classification of breast cancer.
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献