A New Framework for Anomaly Detection in NSL-KDD Dataset using Hybrid Neuro-Weighted Genetic Algorithm

Author:

P Muneeshwari, ,M Kishanthini,

Abstract

There are an increasing number of security threats to the Internet and computer networks. For new kinds of attacks constantly emerging, a major challenge is the development of versatile and innovative security-oriented approaches. Anomaly-based network intrusion detection techniques are in this sense a valuable tool for defending target devices and networks from malicious activities. With testing dataset, this work was able to use the NSL-KDD data collection, the binary and multiclass problems. With that inspiration, data mining techniques are used to offer an automated platform for network attack detection. The system is based on the Hybrid Genetic Neuro-Weighted Algorithm (HNWGA).In this weighted genetic algorithm is used for the selection of features and in this work a neuro-genetic fuzzy classification algorithm has been proposed which is used to identify malicious users by classifying user behaviors. The main benefit of this proposed framework is that it reduces the attacks by highly accurate detection of intruders and minimizes false positives. The evaluation of the performance is performed in NSL-KDD dataset. The experimental result shows of that the proposed work attains better accuracy when compared to previous methods. Such type of IDS systems are used in the identification and response to malicious traffic / activities to improve extremely accuracy.

Publisher

MNAA Pub World

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A bio-inspired approach: Firefly algorithm for Multi-Depot Vehicle Routing Problem with Time Windows;Computer Communications;2022-06

2. A Survey on Blockchain Technology for Network Security Applications;2022 2nd International Conference on Computing and Information Technology (ICCIT);2022-01-25

3. An Efficient Stabbing Based Intrusion Detection Framework for Sensor Networks;Computer Systems Science and Engineering;2022

4. A Back Propagation Neural Network Model and Efficient Routing Security Mechanisms Against Blackhole Attack in HWSNs;Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3