Estimation of annual average daily traffic (AADT) data for low-volume roads: a systematic literature review and meta-analysis

Author:

Baffoe-Twum EdmundORCID,Asa Eric,Awuku Bright

Abstract

Background: The annual average daily traffic (AADT) data from road segments are critical for roadway projects, especially with the decision-making processes about operations, travel demand, safety-performance evaluation, and maintenance. Regular updates help to determine traffic patterns for decision-making. Unfortunately, the luxury of having permanent recorders on all road segments, especially low-volume roads, is virtually impossible. Consequently, insufficient AADT information is acquired for planning and new developments. A growing number of statistical, mathematical, and machine-learning algorithms have helped estimate AADT data values accurately, to some extent, at both sampled and unsampled locations on low-volume roadways. In some cases, roads with no representative AADT data are resolved with information from roadways with similar traffic patterns. Methods: This study adopted an integrative approach with a combined systematic literature review (SLR) and meta-analysis (MA) to identify and to evaluate the performance, the sources of error, and possible advantages and disadvantages of the techniques utilized most for estimating AADT data. As a result, an SLR of various peer-reviewed articles and reports was completed to answer four research questions. Results: The study showed that the most frequent techniques utilized to estimate AADT data on low-volume roadways were regression, artificial neural-network techniques, travel-demand models, the traditional factor approach, and spatial interpolation techniques. These AADT data-estimating methods’ performance was subjected to meta-analysis. Three studies were completed: R squared, root means square error, and mean absolute percentage error. The meta-analysis results indicated a mixed summary effect: 1. all studies were equal; 2. all studies were not comparable. However, the integrated qualitative and quantitative approach indicated that spatial-interpolation (Kriging) methods outperformed the others. Conclusions: Spatial-interpolation methods may be selected over others to generate accurate AADT data by practitioners at all levels for decision making. Besides, the resulting cross-validation statistics give statistics like the other methods' performance measures.

Funder

No funding was received for this review

Publisher

Emerald

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology and Child Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3