Abstract
In this paper we deal with the following problem \[\begin{cases}-\sum\limits_{i=1}^{N}\left[ \left( a+b\int\limits_{\, \Omega }\left\vert \partial _{i}u\right\vert ^{p_{i}}dx\right) \partial _{i}\left( \left\vert \partial _{i}u\right\vert ^{p_{i}-2}\partial _{i}u\right) \right]=\frac{f(x)}{u^{\gamma }}\pm g(x)u^{q-1} & in\ \Omega, \\ u\geq 0 & in\ \Omega, \\ u=0 & on\ \partial \Omega, \end{cases}\] where \(\Omega\) is a bounded regular domain in \(\mathbb{R}^{N}\). We will assume without loss of generality that \(1\leq p_{1}\leq p_{2}\leq \ldots\leq p_{N}\) and that \(f\) and \(g\) are non-negative functions belonging to a suitable Lebesgue space \(L^{m}(\Omega)\), \(1\lt q\lt \overline{p}^{\ast}\), \(a\gt 0\), \(b\gt 0\) and \(0\lt \gamma \lt 1.\)
Publisher
AGHU University of Science and Technology Press
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献