Set Representation for Rule Generation Algorithms

Author:

Kharkongor Carynthia,Nath Bhabesh

Abstract

The task of mining the association rule has become one of the most widely used discovery pattern methods in Knowledge Discovery in Databases (KDD). One such task is to represent the itemset in the memory. The representation of the itemset largely depend on the type of data structure that is used for storing them. Computing the process of mining the association rule im- pacts the memory and time requirement of the itemset. With the increase in the dimensionality of data and datasets, mining such large volume of datasets will be difficult since all these itemsets cannot be placed in the main memory. As representation of an itemset greatly affects the efficiency of the rule mining association, a compact and compress representation of an itemset is needed. In this paper, a set representation is introduced which is more memory and cost efficient. Bitmap representation takes one byte for an element but the set representation uses one bit. The set representation is being incorporated in Apriori Algorithm. Set representation is also being tested for different rule generation algorithms. The complexities of these different rule generation algorithms using set representation are being compared in terms of memory and time execution.

Publisher

AGHU University of Science and Technology Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Vision and Pattern Recognition,Modeling and Simulation,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3