APPLYING HUNGER GAME SEARCH (HGS) FOR SELECTING SIGNIFICANT BLOOD INDICATORS FOR EARLY PREDICTION OF ICU COVID-19 SEVERITY

Author:

Sayed Safynaz,ElKorany Abeer,Sayed Sabah

Abstract

Millions of people around the world have been affected and some have died during the global pandemic Corona (COVID-19). This pandemic has created a global threat to people's lives and medical systems. The constraints of hospital resources and the pressures on healthcare workers during this period are among the reasons for wrong decisions and medical deterioration. Anticipating severe patients is an urgent matter of resource consumption by prioritizing patients at high risk to save their lives. This paper introduces an early prognostic model to predict the severity of patients and detect the most significant features based on clinical blood data. The proposed model predicts ICU severity within the first 2 hours of hospital admission, seeks to assist clinicians in decision-making and facilitates efficient use of hospital resources. The Hunger Game Search (HGS) meta-heuristic algorithm and the SVM are hybridized for building the proposed prediction model. Furthermore, they have been used for selecting the most informative features from the blood test data. Experiments have shown that using HGS for selecting the features with the SVM classifier achieved excellent results compared with the other four meta-heuristic algorithms. The model using the features selected by the HGS algorithm accomplished the topmost results, 98.6% and 96.5% for the best and mean accuracy, respectively, compared with using all features and features selected by other popular optimization algorithms.

Publisher

AGHU University of Science and Technology Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Vision and Pattern Recognition,Modeling and Simulation,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3