complexFuzzy: A novel clustering method for selecting training instances of cross-project defect prediction

Author:

Ozturk Muhammed MarufORCID

Abstract

Over the last decade, researchers have investigated to what extent cross-project defect prediction (CPDP) shows advantages over traditional defect prediction settings. These works do not take training and testing data of defect prediction from the same project. Instead, dissimilar projects are employed. Selecting proper training data plays an important role in terms of the success of CPDP. In this study, a novel clustering method named complexFuzzy is presented for selecting training data of CPDP. The method is developed by determining membership values with the help of some metrics which can be considered as indicators of complexity. First, CPDP combinations are created on 29 different data sets. Subsequently, complexFuzzy is evaluated by considering cluster centers of data sets and comparing some performance measures including area under the curve (AUC) and F-measure. The method is superior to other five comparison algorithms in terms of the distance of cluster centers and prediction performance.

Publisher

AGHU University of Science and Technology Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Vision and Pattern Recognition,Modeling and Simulation,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Candidate project selection in cross project defect prediction using hybrid method;Expert Systems with Applications;2023-05

2. Two-stage cost-sensitive local models for heterogeneous cross-project defect prediction;2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC);2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3