complexFuzzy: A novel clustering method for selecting training instances of cross-project defect prediction
-
Published:2021-02-01
Issue:1
Volume:22
Page:
-
ISSN:2300-7036
-
Container-title:Computer Science
-
language:
-
Short-container-title:csci
Author:
Ozturk Muhammed MarufORCID
Abstract
Over the last decade, researchers have investigated to what extent cross-project defect prediction (CPDP) shows advantages over traditional defect prediction settings. These works do not take training and testing data of defect prediction from the same project. Instead, dissimilar projects are employed. Selecting proper training data plays an important role in terms of the success of CPDP. In this study, a novel clustering method named complexFuzzy is presented for selecting training data of CPDP. The method is developed by determining membership values with the help of some metrics which can be considered as indicators of complexity. First, CPDP combinations are created on 29 different data sets. Subsequently, complexFuzzy is evaluated by considering cluster centers of data sets and comparing some performance measures including area under the curve (AUC) and F-measure. The method is superior to other five comparison algorithms in terms of the distance of cluster centers and prediction performance.
Publisher
AGHU University of Science and Technology Press
Subject
Artificial Intelligence,Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Vision and Pattern Recognition,Modeling and Simulation,Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献