Critical cases in neutral functional differential equations, arising from hydraulic engineering

Author:

R�svan VladimirORCID

Abstract

This paper starts from several applications described by initial/boundary value problems for \(1D\) (time and one space variable) hyperbolic partial differential equations whose basic properties and stability of equilibria are studied throughout the same properties for certain associated neutral functional differential equations. It is a common fact that asymptotic stability for neutral functional differential equations is normally obtained under the assumption of asymptotic stability of the difference operator associated to the aforementioned neutral functional differential equations. However the physically meaningful applications presented in the paper have the associated difference operator(s) in critical cases (their stability is, generally speaking, non-asymptotic). Consequently the stability of the considered application models is either non-asymptotic or fragile (in a sense introduced in the paper). The models represent an overview gathered from various fields, processed here in order to emphasize the associated neutral functional differential equations which, consequently, are a challenge to the usual approaches. In the concluding part there are suggested possible ways to overcome these difficulties.

Publisher

AGHU University of Science and Technology Press

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3