Abstract
In this paper we consider the existence and asymptotic behavior of solutions of the following nonlinear Kirchhoff type problem \[u_{tt}- M\left(\,\displaystyle \int_{\Omega}|\nabla u|^{2}\, dx\right)\triangle u - \delta\triangle u_{t}= \mu|u|^{\rho-2}u\quad \text{in } \Omega \times ]0,\infty[,\] where \[M(s)=\begin{cases}a-bs &\text{for } s \in [0,\frac{a}{b}[,\\ 0, &\text{for } s \in [\frac{a}{b}, +\infty[.\end{cases}\] If the initial energy is appropriately small, we derive the global existence theorem and its exponential decay.
Publisher
AGHU University of Science and Technology Press
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献