Local irregularity conjecture for 2-multigraphs versus cacti

Author:

Grzelec IgorORCID,Wo�niak MariuszORCID

Abstract

A multigraph is locally irregular if the degrees of the end-vertices of every multiedge are distinct. The locally irregular coloring is an edge coloring of a multigraph \(G\) such that every color induces a locally irregular submultigraph of \(G\). A locally irregular colorable multigraph \(G\) is any multigraph which admits a locally irregular coloring. We denote by \(\textrm{lir}(G)\) the locally irregular chromatic index of a multigraph \(G\), which is the smallest number of colors required in the locally irregular coloring of the locally irregular colorable multigraph \(G\). In case of graphs the definitions are similar. The Local Irregularity Conjecture for 2-multigraphs claims that for every connected graph \(G\), which is not isomorphic to \(K_2\), multigraph \(^2G\) obtained from \(G\) by doubling each edge satisfies \(\textrm{lir}(^2G)\leq 2\). We show this conjecture for cacti. This class of graphs is important for the Local Irregularity Conjecture for 2-multigraphs and the Local Irregularity Conjecture which claims that every locally irregular colorable graph \(G\) satisfies \(\textrm{lir}(G)\leq 3\). At the beginning it has been observed that all not locally irregular colorable graphs are cacti. Recently it has been proved that there is only one cactus which requires 4 colors for a locally irregular coloring and therefore the Local Irregularity Conjecture was disproved.

Publisher

AGHU University of Science and Technology Press

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3