Abstract
We look for homoclinic solutions \(q:\mathbb{R} \rightarrow \mathbb{R}^N\) to the class of second order Hamiltonian systems \[-\ddot{q} + L(t)q = a(t) \nabla G_1(q) - b(t) \nabla G_2(q) + f(t) \quad t \in \mathbb{R}\] where \(L: \mathbb{R}\rightarrow \mathbb{R}^{N \times N}\) and \(a,b: \mathbb{R}\rightarrow \mathbb{R}\) are positive bounded functions, \(G_1, G_2: \mathbb{R}^N \rightarrow \mathbb{R}\) are positive homogeneous functions and \(f:\mathbb{R}\rightarrow\mathbb{R}^N\). Using variational techniques and the Pohozaev fibering method, we prove the existence of infinitely many solutions if \(f\equiv 0\) and the existence of at least three solutions if \(f\) is not trivial but small enough.
Publisher
AGHU University of Science and Technology Press