Author:
Almaslokh Abdulaziz,Qian Chuanxi
Abstract
In the present paper, we study the asymptotic behavior of the following higher order nonlinear difference equation with unimodal terms \[x(n+1)= ax(n)+ bx(n)g(x(n)) + cx(n-k)g(x(n-k)), \quad n=0, 1, \ldots,\] where \(a\), \(b\) and \(c\) are constants with \(0\lt a\lt 1\), \(0\leq b\lt 1\), \(0\leq c \lt 1\) and \(a+b+c=1\), \(g\in C[[0, \infty), [0, \infty)]\) is decreasing, and \(k\) is a positive integer. We obtain some new sufficient conditions for the global attractivity of positive solutions of the equation. Applications to some population models are also given.
Publisher
AGHU University of Science and Technology Press
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献