Abstract
In this paper we propose a new mathematical model describing the deformations of an isotropic nonlinear elastic body with variable exponent in dynamic regime. We assume that the stress tensor \(\sigma^{p(\cdot)}\) has the form \[\sigma^{p(\cdot)}(u)=(2\mu +|d(u)|^{p(\cdot)-2})d(u)+\lambda Tr(d(u)) I_{3},\] where \(u\) is the displacement field, \(\mu\), \(\lambda\) are the given coefficients \(d(\cdot)\) and \(I_{3}\) are the deformation tensor and the unit tensor, respectively. By using the Faedo-Galerkin techniques and a compactness result we prove the existence of the weak solutions, then we study the asymptotic behaviour stability of the solutions.
Publisher
AGHU University of Science and Technology Press
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献