Engineering a Bacterial Flagella Forest for Sensing and Actuation – A Progress Report

Author:

Liu Xihe1,Ye Shulin1,Oti Isaac1,Metzinger Lauren1

Affiliation:

1. Southern Methodist University

Abstract

Flagella can be used to make magnetically-controlled microfluidic and nanoscale devices for biomedical applications in both vitro and vivo environments. They are capable of operating with high precision on the cellular and subcellular level. So far, scientists and engineers have successfully used monolithic inorganic materials or photoactive polymers [1] to mimic the helical bacterial flagella whose rotary-propulsion mechanism effectively overcomes the dominant viscous forces that prevail in a low Reynolds-number environment. Here, we focus on bacterial flagella and their rotary motion. The bacterial flagellum is an ideal biomaterial for constructing self-propelling nanoswimmers because it can reversibly change its geometry in response to different environmental stimuli such as pH, the local concentration of certain organic solvents, and mechanical force on the flagella. The bacterial flagellum is very easy to manipulate because it is composed of flagellin which can be mechanically isolated through vortexing and centrifugation, which enables flagella to be used as nanoscale sensors and mechanical transducers. Our project focuses on fabricating a bacterial flagella forest which consists of an ordered array of flagella on a glass substrate. Flagella are attached to magnetic nanobeads via biotin-avidin bonding for actuation by oscillating magnetic field.

Publisher

Southern Methodist University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3