Sensor-Driven Position-Adaptive Spinal Cord Stimulation for Chronic Pain

Author:

Schultz David1

Affiliation:

1. MAPS Applied Research Center, Edina, MN

Abstract

Background: Variation in the intensity of neurostimulation due to body position is a practical problem for many patients implanted with spinal cord stimulation (SCS) systems because positional changes may result in overstimulation or understimulation that leads to frequent need for compensatory manual programming adjustments. Objectives: The purpose of this study was to assess the safety and effectiveness of a novel type of SCS therapy designed to automatically adapt stimulation amplitude in response to changes in a patient’s position or activity. The primary objective of the study was to demonstrate that automatic position-adaptive SCS benefited patients in terms of pain relief and/or convenience compared with neurostimulation adjusted with conventional manual programming. Secondary objectives included assessment of worsened pain relief with automatic adjustment; change in pain score; and the number of manual programming adjustments with position-adaptive neurostimulation compared with manual programming. Study Design: Prospective, multicenter, open-label, randomized crossover study. Setting: Ten interventional pain management centers in the US. Methods: Patients were enrolled a minimum of one week after a successful SCS screening trial. They were then implanted with the RestoreSensorTM neurostimulation device (Medtronic, Inc., Minneapolis, MN) that could be programmed to either automatic position-adaptive stimulation (AdaptiveStimTM) or manual adjustment of stimulation parameters. After implant, all devices were programmed to conventional manual adjustment for a 4-week postoperative period. The patients were then randomized to either conventional manual programming adjustment or position-adaptive stimulation with crossover to the opposite treatment arm occurring at 6 weeks after randomization. The patients were followed for another 6 weeks after crossover. This study was conducted under an FDA-approved Investigational Device Exemption (IDE) and approval of the responsible Institutional Review Boards (IRBs) of the study centers. Results: Seventy-nine patients were enrolled in the study. In an intent-to-treat analysis, 86.5% of patients achieved the primary objective of improved pain relief with no loss of convenience or improved convenience with no loss of pain relief using automatic position-adaptive stimulation compared with using conventional manual programming adjustment alone. This was statistically significantly greater than the predefined minimum success rate of 25%, P < 0.001 (exact one-sided 97.5% lower confidence limit was 76.5%). Only 2.8% of patients reported worsened pain relief during position-adaptive stimulation compared with manual programming. There was a statistically significant reduction in the mean numeric pain rating scale score compared with baseline scores in both treatment arms. Additionally, position-adaptive stimulation demonstrated a statistically significant 41% reduction in the daily average number of programming button presses for amplitude adjustment compared with manual programming (18.2 per day versus 30.7 per day, P = 0.002). Functional improvements reported with position-adaptive stimulation included: improved comfort during position changes (80.3%); improved activity (69%); and improved sleep (47.9%). Adverse events associated with uncomfortable sensations from stimulation did not differ significantly between treatment arms. The incidence of device-related serious adverse events was 3.9%. Limitations: Patients and physicians were not blinded to whether devices were programmed to automatic position-adaptive stimulation or manual adjustment. Responses to assessment questionnaires were based on patient recall. Conclusions: The study demonstrated that automatic position-adaptive stimulation is safe and effective in providing benefits in terms of patient-reported improved pain relief and convenience compared with using manual programming adjustment alone. Key words: spinal cord stimulation, neurostimulation, position sensing, physical activity accelerometer, neuromodulation, effectiveness, pain relief, position-adaptive stimulation, posture-adaptive stimulation, AdaptiveStim Clinical Trial: NCT01106404

Publisher

American Society of Interventional Pain Physicians

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3