Author:
Essam Mohamed Al-Karargy ,Gomaa Mohamed Dawod
Abstract
This study aims to develop a Local Geoid Model (LGM) for Egypt to determine the optimal combinations of global models with Global Navigation Satellite Systems (GNSS/Levelling) data. A precise national geodetic dataset, four Global Geopotential Models (GGMs), and three global Digital Elevation Models (DEMs) have been utilized. Hence, twelve gravimetric LGMs have been developed using the Least-Square Collocation (LSC) method fitted to GNSS/Levelling data and judged over 100 checkpoints. Results revealed that improvements in local geoid accuracy are attributed mainly to GGMs models representing the long wavelength of the Earth's gravitational field. Regarding DEMs, the accuracy of LGMs does not significantly depend on the utilized DEM. Based on the available data, the attained optimum geoid of Egypt has been developed with a standard deviation, equals 0.129 m.
Publisher
Taiwan Association of Engineering and Technology Innovation
Reference25 articles.
1. K. M. Ahlgren, S. A. Holmes, X. Li, Y. M. WANG, and M. A. Youngman, “Geoid Modeling at NOAA’ s National Geodetic Survey as 2022 Approaches,” FIG Working Week, Helsinki, Finland, 2017.
2. M. Greaves, P. Downie, and K. Fitzpatrick, “OSGM15 and OSTN15: Updated Transformations for UK and Ireland,” Geomatics World, No. 32/33, pp. 1-5, 2016.
3. F. Duquenne and A. Coulomb, “The French Approach to Modernize Its Vertical Reference,” Finance Information Group Working Week, May 2015, pp. 17-21.
4. K. Matsuo and Y. Kuroishi, “Refinement of a Gravimetric Geoid Model for Japan using GOCE and An Updated Regional Gravity Ffield Model,” Earth, Planets and Space, vol. 72, no. 1, pp. 1-18, March 2020.
5. A. V. Fernádez, O. L. Castro, and J. G. León, “Geoid Heights in Costa Rica, Case of Study: Central Pacific Zone,” Revista Ingenieria, vol. 30, no. 1, pp. 1-20, November 2020.