Author:
Thong-un Natee,Wongsaroj Wongsakorn
Abstract
This study proposes a method for concurrently determining the position and velocity of a moving object in three-dimensional (3D) space using echolocation. A spherical object, i.e., a flying ball, is used to demonstrate the ability of the proposed method. The position of the object is calculated using a time-of-flight (TOF) technique based on a cross-correlation function, which requires less computational time when using one-bit signal technology. The velocity of the object is subsequently computed from the length of chirp signals and the velocity vector measurements between the position of the object and the position of acoustical receivers. The coordinate of the object location is identified by the distance from the sound source to the object, the elevation angle, and the azimuth angle. The validity and repeatability of the experimental results are evaluated by statistical methods, showing ±1% of accuracy. It is concluded that the proposed method can identify the position and velocity of a rigid body in 3D space.
Publisher
Taiwan Association of Engineering and Technology Innovation
Subject
Management of Technology and Innovation,General Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,General Computer Science
Reference34 articles.
1. S. P. Dear, J. A. Simmons, and J. Fritz, “A Possible Neuronal Basis for Representation of Acoustic Scenes in Auditory Cortex of the Big Brown Bat,” Nature, vol. 346, pp. 620-623, August 1993.
2. W. Wongsaroj, H. Takahashi, N. Thong-Un, and H. Kikura, “Ultrasonic Measurement for the Experimental Investigation of Velocity Distribution in Vapor-Liquid Boiling Bubbly Flow,” International Journal of Engineering and Technology Innovation, vol. 12, no. 1, pp. 16-28, January 2022.
3. P. Pal, “Dynamic Poisson’s Ratio and Modulus of Elasticity of Pozzolana Portland Cement Concrete,” International Journal of Engineering and Technology Innovation, vol. 9, no. 2, pp. 131-144, March 2019.
4. F. E. Gueuning, M. Varlan, C. E. Eugene, and P. Dupuis, “Accurate Distance Measurement by an Autonomous Ultrasonic System Combining Time-of-Flight and Phase-Shift Methods,” IEEE Instrumentation and Measurement Technology Conference, pp. 1236-1240, June 1996.
5. R. Queiros, F. C. Alegria, P. S. Girao, and A. C. Serra, “Cross-Correlation and Sine-Fitting Techniques for High-Resolution Ultrasonic Ranging,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 12, pp. 3227-3236, April 2006.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献