Synergistic Application of Particle Swarm Optimization and Gravitational Search Algorithm for Solar PV Performance Improvement

Author:

Aditya Sharma ,Dheeraj Kumar Palwalia

Abstract

This study aims to optimize photovoltaic systems by developing a novel hybrid metaheuristic approach for maximum power point tracking (MPPT). The proposed method eclectically combines particle swarm optimization (PSO) and gravitational search algorithm (GSA) to overcome individual limitations and leverage complementary strengths. PSO, while surpassing in exploration, may suffer from premature convergence. GSA demonstrates strong exploitation capabilities but can struggle with slow convergence. A simulation model is developed to evaluate the hybrid algorithm’s performance in optimizing PV systems’ duty cycle. The approach utilizes the exploitation capabilities of PSO and GSA to navigate the search space effectively. Results demonstrate that the hybrid algorithm outperforms traditional techniques and standalone metaheuristics, achieving improved convergence time, faster settling time, and enhanced MPPT tracking efficiency. Under varying irradiance conditions, the proposed method consistently delivers higher power generation and improved overall PV system efficiency, offering a promising solution for optimizing PV systems and maximizing energy generation.

Publisher

Taiwan Association of Engineering and Technology Innovation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3