Clustering Analysis with Embedding Vectors: An Application to Real Estate Market Delineation
-
Published:2021-11-30
Issue:1
Volume:7
Page:30-40
-
ISSN:2518-2994
-
Container-title:Advances in Technology Innovation
-
language:
-
Short-container-title:Adv. technol. innov.
Abstract
Although clustering analysis is a popular tool in unsupervised learning, it is inefficient for the datasets dominated by categorical variables, e.g., real estate datasets. To apply clustering analysis to real estate datasets, this study proposes an entity embedding approach that transforms categorical variables into vector representations. Three variants of a clustering algorithm, i.e., the clustering based on the traditional Euclidean distance, the Gower distance, and the embedding vectors, are applied to the land sales records to delineate the real estate market in Gwacheon-si, Gyeonggi province, South Korea. Then, the relevance of the resultant submarkets is evaluated using the root mean squared errors (RMSE) obtained from a hedonic pricing model. The results show that the RMSE in the embedding vector-based algorithm decreases substantially from 0.076-0.077 to 0.069. This study shows that the clustering algorithm empowered by embedding vectors outperforms the conventional algorithms, thereby enhancing the relevance of the delineated submarkets.
Publisher
Taiwan Association of Engineering and Technology Innovation
Subject
Management of Technology and Innovation,General Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,General Computer Science
Reference46 articles.
1. V. Goyal, G. Singh, O. Tiwari, S. Punia, and M. Kumar, “Intelligent Skin Cancer Detection Mobile Application Using Convolution Neural Network,” Journal of Advanced Research in Dynamical and Control Systems, vol. 11, no. 7, pp. 253-259, 2019. 2. A. Aggarwal, M. Alshehri, M. Kumar, P. Sharma, O. Alfarraj, and V. Deep, “Principal Component Analysis, Hidden Markov Model, and Artificial Neural Network Inspired Techniques to Recognize Faces,” Concurrency and Computation: Practice and Experience, vol. 33, no. 9, e6157, May 2021. 3. M. Alshehri, M. Kumar, A. Bhardwaj, S. Mishra, and J. Gyani, “Deep Learning Based Approach to Classify Saline Particles in Sea Water,” Water, vol. 13, no. 9, 1251, 2021. 4. A. Aggarwal, A. Rani, P. Sharma, M. Kumar, A. Shankar, and M. Alazab, “Prediction of Landsliding Using Univariate Forecasting Models,” Internet Technology Letters, in press. 5. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Cambridge: Morgan Kaufmann, 2016.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|