Skin Lesion Classification towards Melanoma Detection Using EfficientNetB3

Author:

Saumya Salian ,Sudhir Sawarkar

Abstract

The rise of incidences of melanoma skin cancer is a global health problem. Skin cancer, if diagnosed at an early stage, enhances the chances of a patient’s survival. Building an automated and effective melanoma classification system is the need of the hour. In this paper, an automated computer-based diagnostic system for melanoma skin lesion classification is presented using fine-tuned EfficientNetB3 model over ISIC 2017 dataset. To improve classification results, an automated image pre-processing phase is incorporated in this study, it can effectively remove noise artifacts such as hair structures and ink markers from dermoscopic images. Comparative analyses of various advanced models like ResNet50, InceptionV3, InceptionResNetV2, and EfficientNetB0-B2 are conducted to corroborate the performance of the proposed model. The proposed system also addressed the issue of model overfitting and achieved a precision of 88.00%, an accuracy of 88.13%, recall of 88%, and F1-score of 88%.

Publisher

Taiwan Association of Engineering and Technology Innovation

Subject

Management of Technology and Innovation,General Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,General Computer Science

Reference28 articles.

1. “Cancer Facts and Figures 2021,” https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2021/cancer-facts-and-figures-2021.html, December 01, 2021.

2. S. Sonthalia, S. Yumeen, and F. Kaliyadan, “Dermoscopy Overview and Extradiagnostic Applications,” https://www.ncbi.nlm.nih.gov/books/NBK537131/, August 13, 2021.

3. K. Munir, H. Elahi, A. Ayub, F. Frezza, and A. Rizzi, “Cancer Diagnosis Using Deep Learning: A Bibliographic Review,” Cancers (Basel), vol. 11, no. 9, article no. 1235, August 2019.

4. “ISIC Challenge Datasets,” https://challenge.isic-archive.com/data/, December 01, 2021.

5. P. Naronglerdrit, I. Mporas, M. Paraskevas, and V. Kapoulas, “Melanoma Detection from Dermatoscopic Images Using Deep Convolutional Neural Networks,” International Conference on Biomedical Innovations and Applications (BIA), pp. 13-16, November 2020.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skin Cancer Prediction using Modified EfficientNet-B3 with Deep Transfer Learning;2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE);2024-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3