Author:
Bui Manh Cuong,Nguyen Van Duong,Do Van Si,Phan Van Manh,Le Van Thao
Abstract
This research aims to investigate the effects of vibration amplitude in vibratory stress relief (VSR) on the fatigue strength of structures with residual stress. Experiments are carried out on specimens with residual stress generated by local heating. Flat specimens made of A36 steel are prepared to be suitable for setting up fatigue bending tests on a vibrating table. Several groups of samples are subjected to VSR at resonant frequencies with different acceleration amplitudes. The results show that VSR has an important influence on the residual stress and fatigue limit of steel specimens. The maximum residual stress in the samples is reduced about 73% when the amplitude of vibration acceleration is 57 m/s2. The VSR method can also improve the fatigue limit by up to 14% for steel samples with residual stress.
Publisher
Taiwan Association of Engineering and Technology Innovation
Subject
Management of Technology and Innovation,General Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,General Computer Science
Reference29 articles.
1. J. S. Robinson, M. S. Hossain, and C. E. Truman, “Residual Stresses in the Aluminum Alloy 2014A Subject to PAG Quenching and Vibratory Stress Relief,” The Journal of Strain Analysis for Engineering Design, in press.
2. Q. Wu, D. P. Li, and Y. D. Zhang, “Detecting Milling Deformation in 7075 Aluminum Alloy Aeronautical Monolithic Components Using the Quasi-Symmetric Machining Method,” Metals, vol. 6, no. 4, 80, April 2016.
3. M. J. Vardanjani, M. Ghayour, and R. M. Homami, “Analysis of the Vibrational Stress Relief for Reducing the Residual Stresses Caused by Machining,” Experimental Techniques, vol. 40, no. 2, pp. 705-713, April 2016.
4. H. Sasahara, “The Effect on Fatigue Life of Residual Stress and Surface Hardness Resulting from Different Cutting Conditions of 0.45% C Steel,” International Journal of Machine Tools and Manufacture, vol. 45, no. 2, pp. 131-136, February 2005.
5. M. Benedetti, V. Fontanari, P. Scardi, C. A. Ricardo, and M. Bandini, “Reverse Bending Fatigue of Shot Peened 7075-T651 Aluminum Alloy: The Role of Residual Stress Relaxation,” International Journal of Fatigue, vol. 31, no. 8-9, pp. 1225-1236, 2009.