Author:
Wang Po-Tong,Lin Shao-Yu,Sheu Jia-Shing
Abstract
With the development of artificial intelligence, public cloud service platforms have begun to provide common pretrained object recognition models for public use. In this study, a dynamic vehicle path-planning system is developed, which uses several general pretrained cloud models to detect obstacles and calculate the navigation area. The Euclidean distance and the inequality based on the detected marker box data are used for vehicle path planning. Experimental results show that the proposed method can effectively identify the driving area and plan a safe route. The proposed method integrates the bounding box information provided by multiple cloud object detection services to detect navigable areas and plan routes. The time required for cloud-based obstacle identification is 2 s per frame, and the time required for feasible area detection and action planning is 0.001 s per frame. In the experiments, the robot that uses the proposed navigation method can plan routes successfully.
Publisher
Taiwan Association of Engineering and Technology Innovation
Subject
Management of Technology and Innovation,General Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献