A Novel Paradigm for Sentiment Analysis on COVID-19 Tweets with Transfer Learning Based Fine-Tuned BERT

Author:

Amit Pimpalkar ,Jeberson Retna Raj

Abstract

The rapid escalation in global COVID-19 cases has engendered profound emotions of fear, agitation, and despondency within society. It is evident from COVID-19-related tweets that spark panic and elevate stress among individuals. Analyzing the sentiment expressed in online comments aids various stakeholders in monitoring the situation. This research aims to improve the performance of pre-trained bidirectional encoder representations from transformers (BERT) by employing transfer learning (TL) and fine hyper-parameter tuning (FT). The model is applied to three distinct COVID-19-related datasets, and each of the datasets belongs to a different class. The evaluation of the model’s performance involves six different machine learning (ML) classification models. This model is trained and evaluated using metrics such as accuracy, precision, recall, and F1-score. Heat maps are generated for each model to visualize the results. The performance of the model demonstrates accuracies of 83%, 97%, and 98% for Class-5, Class-3, and binary classifications, respectively.

Publisher

Taiwan Association of Engineering and Technology Innovation

Subject

Management of Technology and Innovation,General Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sentiment Analysis Using an Ensemble Approach on Flipkart Societal Media Data;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

2. Ensemble Learning Techniques for Classifying Stressed and Unstressed Textual Data;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

3. A Novel Approach for Accurate Stock Market Forecasting by Integrating ARIMA and XGBoost;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3