Effects of Bi3+ Ion-Doped on the Microstructure and Photoluminescence of La0.97Pr0.03VO4 Phosphor

Author:

Chen Hao-Long,Shih Hung-Rung,Wu Sean,Chang Yee-Shin

Abstract

The objective of this paper is to enhance the emission intensity of La0.97Pr0.03VO4 single-phased white light emitting phosphor. The Bi3+ ion-doped La0.97Pr0.03VO4 single-phased white light emitting phosphors are synthesized using a sol-gel method. The structure and photoluminescence properties of (La0.97-yBiy)Pr0.03VO4 (y = 0-0.05) phosphor are also examined. The XRD results show that the structure of La0.97Pr0.03VO4 phosphors with different concentrations of Bi3+ ion doping keeps the monoclinic structure. The SEM results show that the phosphor particles become smoother when the Bi3+ ion is doped. The excitation band for La0.97Pr0.03VO4 phosphor exhibits a blue shift from 320 nm to 308 nm as the Bi3+ ion contents are increased. The maximum emission intensity is achieved for a Bi3+ ion content of 0.5 mol%, which is about 30% greater than that with no Bi3+ ion doped. The CIE chromaticity coordinates are all located in the near white light region for different Bi3+ ion-doped La0.97Pr0.03VO4 phosphors.

Publisher

Taiwan Association of Engineering and Technology Innovation

Subject

Management of Technology and Innovation,General Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3