Real Time Scanning-Modeling System for Architecture Design and Construction

Author:

Zhang Ye,Zhang Kun,Chen Kaidi,Xu Zhen

Abstract

The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data is often treated as an afterthought which doesn’t factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for computational design and autonomous robotic construction. By using cameras to scan the raw materials, this system would get related data and build 3D models in real time. These data would be used by a computer to calculate rational outcomes and help a robot make decisions about its construction paths and methods. The result of an application pavilion shows that data of raw materials, architectural design, and robotic construction can be integrated into a digital chain. The method and gain of the material-oriented design approach are discussed and future research on using different source materials is laid out.

Publisher

Taiwan Association of Engineering and Technology Innovation

Subject

Management of Technology and Innovation,General Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,General Computer Science

Reference16 articles.

1. K. Wu and A. Kilian, “Design natural wood log structures with stochastic assembly and deep learning,” Robotic fabrication in architecture, art and design, Springer Press, August 2018, pp. 16-30.

2. A. Picon, Architecture and the virtual: towards a new materiality, Wissenschaftliche Zeitschrift der Bauhaus-Universität Weimar, 2003.

3. N. Leach, “Digital cities,” Architectural Design, vol. 79, no. 4, pp. 6-13, June 2009.

4. F. Gramazio, M. Kohler, and J. WillMann, The robotic touch: How robots change architecture: Gramazio&Kohler Research ETH Zurich 2005-2013, 1st ed. Zurich: Park Books, 2014.

5. F. Chen, G. M. Brown, and M. Song, “Overview of 3-D shape measurement using optical methods,” Optical Engineering, vol. 39, no. 1, pp. 10-22, January 2000.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3