Author:
Manjunatha N ,Sarika Raga ,Sanjay Kumar Gowre ,Hameed Miyan
Abstract
Gallium arsenide (GaAs) composite semi-conductive rods with an air background lattice act as the building blocks for the photonic crystal structure used of a biosensor. The study presents a biosensor of a two-rod nano-cavity for identifying distinct stages of plasmodium falciparum in red blood cells (RBCs) in the early detection of malaria. The proposed biosensor enables the creation of a label-free biosensing environment in which optical and dispersion properties are investigated using plane wave expansion (PWE) and finite-difference time-domain (FDTD) techniques. The biosensor, with a sensing region for an analyte, is utilized to detect a change in refractive index to differentiate between normal RBCs and plasmodium falciparum-infected cells. The results show that the biosensor has a high sensitivity of 798.143 nm/RIU, a high Q-factor of 9881.926, a low detection limit (δ) of 222.4 × 10-6 RIU, a high FOM of 4496.079 RIU-1, and a compact area of 46.14 µm2.
Publisher
Taiwan Association of Engineering and Technology Innovation
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献