Numerical and Experimental Study on the Grinding Performance of Ti-Based Super-Alloy

Author:

Phi Hung Trong,Hoang Got Van,Nguyen Trung Kien,Truong Son Hoanh

Abstract

The experiments of the surface grinding of Ti-6Al-4V grade 5 alloy (Ti-64) with a resin-bonded cubic Boron Nitride (cBN) grinding wheel are performed in this research to estimate the influence of cutting parameters named workpiece infeed speed, Depth of Cut (DOC), cooling condition on the grinding force, force ratio, and specific energy. A finite element simulation model of single-grain grinding of Ti-64 is also implemented in order to predict the values of grinding forces and temperature. The experimental results show that an increase of workpiece infeed speed creates higher intensified cutting forces than the DOC. The grinding experiments under wet conditions present slightly lower tangential forces, force ratio, and specific energy than those in dry grinding. The simulation outcomes exhibit that the relative deviation of simulated and experimental forces is in the range of 1-15%. The increase in feed rate considerably reduces grinding temperature, while enhancement of DOC elevates the heat generation in the cutting zone.

Publisher

Taiwan Association of Engineering and Technology Innovation

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a two-pole electromagnet and its analysis under different load conditions;Journal of Innovative Engineering and Natural Science;2024-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3